MIDTERM EXAM II
 Linear Algebra

Time: 110 minutes

- No electronic devices - including calculators - , books, or notes are allowed in the exam.
- All answers must be properly justified- otherwise they will not be considered.
- Answer exclusively to what you are being asked. Anything else that you add may be used against you.

Problem 1 Consider the linear map $T: \mathbb{P}_{3} \rightarrow \mathbb{P}_{4}$ defined by $T[p(x)]=x p(x)$ for every $p(x) \in \mathbb{P}_{3}$.
(a) (0.75 points) Write the matrix of T with respect to the standard bases of \mathbb{P}_{3} and \mathbb{P}_{4}.
(b) (1.5 points) Consider the polynomials $q_{0}(x)=1, q_{1}(x)=2 x, q_{2}(x)=4 x^{2}-1, q_{3}(x)=$ $8 x^{3}-4 x$, and $q_{4}(x)=16 x^{4}-12 x^{2}+1$. Compute the matrix of T with respect to the bases

$$
\mathcal{B}=\left\{q_{0}(x), q_{1}(x), q_{2}(x), q_{3}(x)\right\} \quad \text { and } \quad \mathcal{C}=\mathcal{B} \cup\left\{q_{4}(x)\right\},
$$

that is, $M_{T}^{\mathcal{C}, \mathcal{B}}$.
(c) (0.75 points) Is T injective? Is T surjective? Justify your answers.

Problem 2 Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{5}$. The matrix of T with respect to the standard basis is

$$
M_{T}=\left(\begin{array}{ccccc}
0 & 0 & 2 & 0 & 0 \\
0 & -3 & 0 & 6 & 0 \\
0 & 0 & -8 & 0 & 12 \\
0 & 0 & 0 & -15 & 0 \\
0 & 0 & 0 & 0 & -24
\end{array}\right)
$$

(a) (1 point) Without any calculations, explain why T is diagonalizable.
(b) (1.5 points) Diagonalize M_{T}.

Problem 3 (2.5 points) Let $\mathcal{E}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$. Define the following inner product on \mathbb{P}_{4} :

$$
\langle p(x), q(x)\rangle=[p(x)]_{\mathcal{E}}^{t}\left(\begin{array}{ccccc}
1 & 0 & 1 / 4 & 0 & 1 / 8 \\
0 & 1 / 4 & 0 & 1 / 8 & 0 \\
1 / 4 & 0 & 1 / 8 & 0 & 5 / 64 \\
0 & 1 / 8 & 0 & 5 / 64 & 0 \\
1 / 8 & 0 & 5 / 64 & 0 & 7 / 128
\end{array}\right)[q(x)]_{\mathcal{E}}, \quad \forall p(x), q(x) \in \mathbb{P}_{4} .
$$

Find a basis for \mathbb{P}_{4} orthogonal with respect to \langle,$\rangle .$

Problem 4 (2 points) Find the best approximation in \mathbb{P}_{2} with respect to the norm induced by \langle,$\rangle defined in the previous problem, of the polynomial p(x)=x^{4}-x^{3}+\frac{1}{4} x^{2}-\frac{1}{2} x+\frac{13}{16}$.

